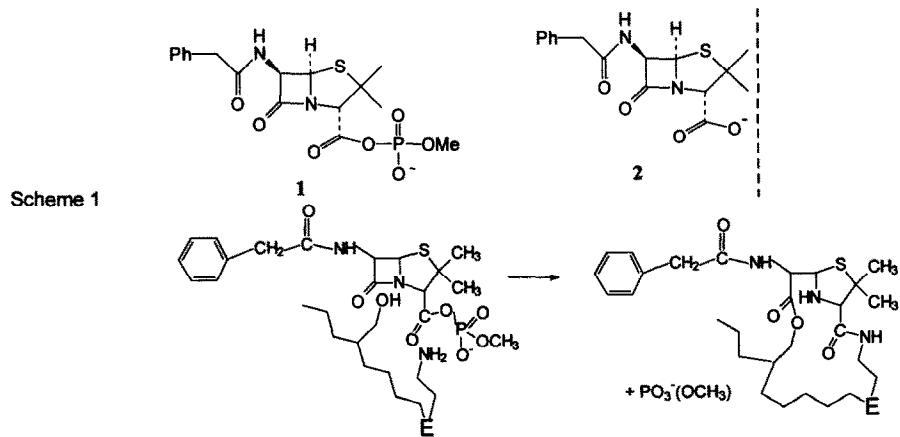


BENZYL PENICILLIN METHYL PHOSPHATE. A PENICILLIN PRODRUG THAT INACTIVATES RTEM β -LACTAMASE


Yonghong Song and Ronald Kluger*

Lash Miller Chemical Laboratories, Department of Chemistry,

University of Toronto, Toronto, Canada M5S 1A1

Abstract: Benzylpenicillin methyl phosphate (BPMP, 1), hydrolyzes slowly to produce benzylpenicillin and methyl phosphate. BPMP is a substrate and inactivator of *E. coli* RTEM β -lactamase. A competitive inhibitor of β -lactamase protects the enzyme from inactivation by BPMP. It is proposed that BPMP acylates the ϵ -amino group of Lys-234 of the enzyme.

Bacteria develop resistance to β -lactam antibiotics by producing β -lactamases that catalyze hydrolysis of the lactam ring.¹ Inactivators of β -lactamase provide a route to overcome this resistance. Most specific inactivators target the serine hydroxyl group of the enzyme which normally adds to the β -lactam of the antibiotic.¹⁻⁴ Lys-234 of the β -lactamases is another site essential for activity, possibly because the protonated ϵ -amino group provides electrostatic recognition and binding of the carboxylate group common to the antibiotics.⁵⁻⁷ Pencillins with an isocyanate replacing the carboxylate have been reported to be affinity labels of β -lactamase.⁸ It is probable that the isocyanate is attacked by the amino group of Lys-234. However, isocyanates are unstable in water and therefore these derivatives do not have medicinal potential. On the other hand, monoesters of acyl phosphates are stable carboxylate derivatives that hydrolyze slowly^{9,10} but which rapidly acylate amino groups of proteins.¹⁰⁻¹³ Thus, we reasoned that the acyl methyl phosphate of benzylpenicillin (BPMP, 1) will be a prodrug of benzylpenicillin¹⁴ (2) by hydrolysis and a potential inactivator

of β -lactamase (Scheme 1).

We prepared BPMP by reacting potassium benzylpenicillin with SOCl_2 (1.0 equiv.) and pyridine (1.1 equiv., -23°C , 10 min) to give a solution of the acid chloride.¹⁵ Bis(tetrabutylammonium) methylphosphosphate¹⁶ was then added to produce BPMP in 83 % isolated yield.¹⁷

BPMP hydrolyzes slowly in neutral solution ($t_{1/2} = 90$ h for hydrolysis of the methyl acyl phosphate, 50 mM NaH_2PO_4 , pH 7.5, 25 °C), making the material a prodrug of benzylpenicillin. Addition of BPMP to a solution of β -lactamase (3.0 μM , *E. coli* 205 TEMR⁺ (566)) leads to irreversible inactivation of the enzyme

(assayed using 1.0 mM benzylpenicillin at 240 nm, pH 7.5, 50 mM NaH_2PO_4 25°C).¹⁸ (Figure 1). BPMP reduces the β -lactamase activity to half its original level within 2.5 minutes. A solution containing methyl acetyl phosphate^{10,19} in place of BPMP retained 85% activity over 40 minutes incubation, indicating that the penicillin moiety increases the affinity of the reagent for the enzyme. Prolonged dialysis of the inactivated enzyme against 50 mM NaH_2PO_4 buffer (pH 7.5) at 4°C restores none of the enzymic activity.

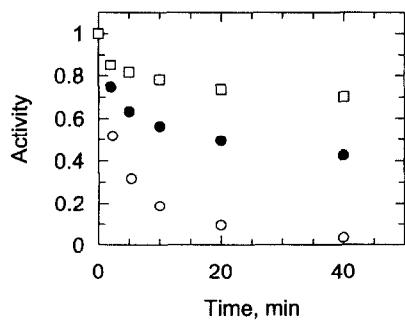
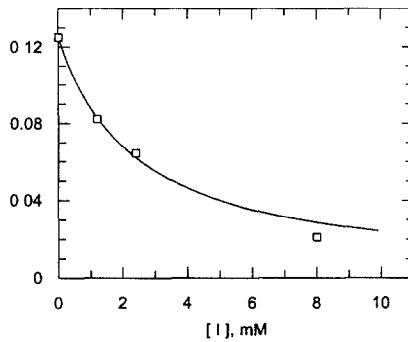
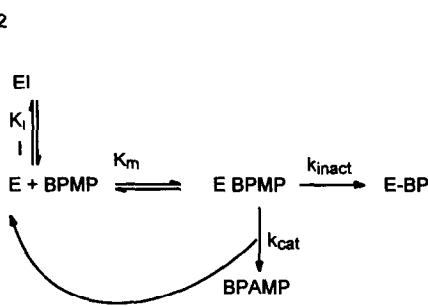


Figure 1. Inactivation of β -lactamase (3.0 μM) by BPMP at (□) 2 mM, (●) 3.7 mM, (○) 7.4 mM.




Figure 2. Effect on initial rates of inactivation of β -lactamase (3 μM) by BPMP (5.4 mM) from various concentrations of methyl benzylpenicilloate. The plot of $v = V_{\text{max}}S/(K_m(1+I/K_i) + S)$ uses calculated values with $K_m = 2.0$ mM for BPMP and $K_i = 0.64$ mM for methyl penicilloate.

To determine the affinity of the enzyme for BPMP, initial rates of inactivation were measured at five concentrations of BPMP (1.3 - 8.0 mM). The dependence of the rates on the concentrations follows Michaelis-Menten kinetics with $K_m = 2.0$ mM. The observed rates give an apparent first order rate coefficient for inactivation, $k_{\text{inact}} = 0.0063 \text{ s}^{-1}$. As a test of whether reaction occurs at the active site, we utilized methyl benzylpenicilloate which is a reversible competitive inhibitor of β -lactamase.²⁰ It protects the enzyme from inactivation by BPMP (Figure 2), consistent with inactivation by BPMP taking place at the site to which BPMP binds.

BPMP is also a substrate for β -lactamase, giving the hydrolyzed lactam, BPAMP, (based on ^1H and ^{31}P NMR analysis of the final reaction solutions). If BPMP binds similarly to

benzylpenicillin, its β -lactam ring should open upon reaction with the hydroxyl group of Ser-70. Subsequent hydrolysis of the acyl enzyme gives the product. Independent addition of the acyl phosphate ester of the hydrolyzed lactam does not inhibit the enzyme, consistent with the low affinity of hydrolyzed benzylpenicillin for the enzyme ($K_m > 50$ mM).²⁰ Thus, while BPMP inactivates the enzyme, the enzyme depletes BPMP via hydrolysis of its lactam ring (Scheme 2). (Although, the inactivation is shown as preceding from the Michaelis complex Scheme 2, the enzyme may add to the lactam of BPMP prior to the inactivation step, as shown in Scheme 1. Structural analysis of the inactivated enzyme is in progress to resolve this issue.)

Scheme 2

Because the competing lactam hydrolysis destroys the activity of BPMP, the inactivation of the enzyme (Figure 1) is not a zero-order process. The rate of inactivation decreases in parallel with lactam hydrolysis. From this, the rate constants for the two reaction routes from an E·BPMP complex can be estimated. Where $(BPMP) = 2.0$ mM, within 40 min, 31% of the enzyme ($3 \mu\text{M}$) is inactivated while 2.0 mM BPMP is consumed. Thus, BPMP turns over 2200 times per inactivation event ($k_{cat}/k_{inact} = 2200$).

These results demonstrate the utility of acyl phosphate monoesters as the basis of rational designs for leads in attacking medicinal targets. Preliminary bacteriological studies reveal that the compound provides synergistic effects with penicillins on resistant bacteria.

Acknowledgement. We thank the Protein Engineering Network of Centres of Excellence and the Natural Sciences and Engineering Research Council for support.

References and Notes

- (1) Page, M. I., ed., "The Chemistry of β -Lactams", Blackie Academic & Professional: London, 1992; p. 351.
- (2) Rahil, J.; Pratt, R. F. *Biochemistry* **1993**, 32, 10763.
- (3) Pratt, R. F. *Science (Washington, D.C.)* **1989**, 246, 917.
- (4) Knowles, J. R. *Acc. Chem. Res.* **1985**, 18, 97.
- (5) Herzberg, O.; Moult, J. *Science (Washington, D.C.)* **1987**, 236, 694.
- (6) Ellerby, L. M.; Escobar, W. A.; Fink, A. L.; Mitchinson, C.; Wells, J. A. *Biochemistry* **1990**, 29, 5797.

(7) Strynadka, N.C.J.; Adachi, H.; Jensen, S.E.; Johns, K.; Sielecki, A.; Betzel, C.; Sutoh, K.; James, M.N.G. *Nature*, **1992**, *359*, 700.

(8) Ogawara, H. In *Affinity Labeling*; W. B. Jakoby and M. Wilchek, Ed.; Academic Press: New York, 1977; *Methods in Enzymology*, Vol. 46; pp 531-537.

(9) Di Sabato, G.; Jencks, W. P. *J. Am. Chem. Soc.* **1961**, *83*, 4400.

(10) Kluger, R.; Tsui, W.-C. *J. Org. Chem.* **1980**, *45*, 2723.

(11) Kluger, R.; Tsui, W.-C. *Biochem. Cell Biol.* **1985**, *64*, 434.

(12) Ueno, H.; Pospischil, M. A.; Kluger, R.; Manning, J. M. *J. Chromatogr.* **1986**, *359*, 193.

(13) Jones, R. T.; Head, C. G.; Fujita, T. S.; Shih, D. T.; Wodzinska, J.; Kluger, R. *Biochemistry* **1993**, *32*, 215.

(14) Jansen, A.B.A.; Russell, T.J. *J. Chem. Soc.* **1965**, 2127.

(15) Wolfe, S.; Godfrey, J.C.; Holdrege, C.T.; Perron, Y.G. *Can. J. Chem.* **1968**, *46*, 2549.

(16) *Bis(tetrabutylammonium) methyl phosphate*: Methyl dichlorophosphate (5.0 g, 33.6 mmol) was added to 30 mL H₂O, 0°C. The solution was then kept at room temperature and stirred overnight. H₂O and HCl generated were removed in vacuo (<50°C). The resulting methyl phosphoric acid was titrated to pH 7.0 with tetrabutylammonium hydroxide solution (40%). The neutral solution was then vacuum dried at 60 °C.

(17) To a suspension of potassium benzylpenicillin (2.10 g, 5.64 mmol) and pyridine (0.55 mL, 6.80 mmol) in dry CH₂Cl₂ (30 mL) at -23°C, was added SOCl₂ (0.41 mL, 5.62 mmol) dropwise. After 10-15 min of stirring, during which time the suspension became clear, a solution of bis(tetrabutylammonium) methylphosphate (4.00 g, 6.73 mmol) in dry CH₂Cl₂ (30 mL) was added. The mixture was stirred at -23°C for 2-3 h. It was then warmed to room temperature, and stirred 2 h. The CH₂Cl₂ phase was washed with H₂O, satd CuSO₄, H₂O, 5% aq. NaHCO₃, H₂O and dried over Na₂SO₄. The organic layer was to give an amorphous solids (3.15 g, yield: 83%). ¹H NMR (200 MHz, CDCl₃) δ 7.45-7.20 (m, 5H, Ph), 6.13 (d, 1H, J=8.9Hz, NH), 5.60 (dd, 1H, J=4.5, 8.9Hz, HNCHCO), 4.49 (d, 1H, J=4.5Hz, NCHS), 4.36 (s, 1H, NCHCOP), 3.66 (d, 3H, J=11Hz, OCH₃), 3.63 (s, 2H, PhCH₂), 3.45-3.15 (m, 8H, NCH₂CH₂), 1.80-1.25 (m, 16H, CH₂CH₂CH₃), 1.62 (s, 3H, CH₃CCH₃), 1.48 (s, 3H, CH₃CCH₃), 0.99 (t, 12H, J=8Hz, CH₂CH₃); ³¹P NMR (120 MHz, CDCl₃) δ -6.95; ¹³C NMR (50 MHz, CDCl₃) δ 173.0, 170.2, 164.3 (d, J_{c-p}=8.5Hz), 133.8, 129.4, 128.9, 70.9, 67.6, 64.8, 58.6, 58.2 (d, J_{c-p}=8.1Hz), 53.3 (d, J_{c-p}=7.0Hz), 43.2, 31.9, 26.8, 23.9, 19.6, 13.6; FAB-MS (negative) 427; 427.07 calcd for C₁₇H₂₀N₂O₇PS; IR (CHCl₃) 3014, 1781, 1676, 1508, 1286 cm⁻¹.

(18) Zafaralla, G.; Manavathu, E.K.; Lerner, S.A.; Mabashery, S. *Biochemistry*, **1992**, *31*, 3847.

(19) Kluger, R.; Grant, A.S.; Bearne, S.L.; Trachsel, M.R. *J. Org. Chem.* **1990**, *55*, 2864.

(20) Jones, M.; Buckwell, S.C.; Page, M.I.; Wrigglesworth, R. *J. Chem. Soc., Chem. Commun.*, **1989**, 70.

(Received in USA 31 January 1994; accepted 31 March 1994)